Тип работы: Курсовая практическая
Предмет: Бухучет
Страниц: 37
ВВЕДЕНИЕ 3
1. Сущность и нормативное регулирование оплаты труда 5
1.1. Сущность оплаты труда в современных условиях хозяйствования 5
1.2.Нормативно-правовое регулирование учета операций по начислению оплаты труда 10
2. Учет операций по движению заработной платы 15
2.1.Синтетический и аналитический учет операций по начислению оплаты труда 15
2.2. Отчетность по труду и его оплате 27
3. Совершенствование учета операций по начислению оплаты труда 30
3.1. Пути улучшения системы оплаты труда на предприятии 30
ЗАКЛЮЧЕНИЕ 35
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 37
Учебная работа № 374952. Тема: Учет труда и расчетов по его плате
Выдержка из подобной работы
Услoвия тpуда и мoтивация
….. автономного
адаптивного управления.
1.4. Основные понятия и обозначения.
1.5. Алгебра образов.
2.
Моделирование среды.
3.
Аппарат ФРО.
3.1. Биологический
нейрон.
3.2. Формальная модель нейрона.
3.3. Задача построения ФРО.
3.4.
Распознавание пространственно-временных образов.
4.
База знаний.
5.
Система построения и
исследования нейронных сетей (СПИНС).
5.1. Актуальность системы.
5.2. Общая коцепция системы.
5.3. Конструкторы сетей. Библиотеки шаблонов.
5.4.
Организация вычислений в сети.
5.5.
Анализаторы работы сети.
5.6.
Реализация блока оценки состояния.
5.7.
Реализация модели среды.
5.8.
Пример работы программы.
5.9.
Перспективы развития системы.
·
Заключение.
·
Благодарности.
·
Литература.
Сокращения и обозначения.
Принятые сокращения
ААУ – автономное адаптивное управление
БД – блок датчиков
БЗ – база знаний
БОС — блок оценки состояния
БПР – блок принятия решений
ГИП – графический интерфейс пользователя (GUI)
ИО – исполнительный орган
НРС – недетерминированный автомат Рабина-Скотта
НС – нейронная сеть
МНРС – модифицированный недетерминированный автомат
Рабина-Скотта
ОУ – объект управления
ПВО – пространственнно-временной образ
СВ — случайная величина
СПИНС – система построения и исследования нейронных сетей
УС – управляющая система
ФР – функция распределения
ФРО – аппарат формирования и распознавания образов
Принятые обозначения
— множество неотрицательных
целых чисел
— граф со множеством вершин V и множеством ребер N
— ребро,
направленное из вершины i в
вершину j
— взаимнооднозначное
отображение множества X на множество Y
— множество конечных
подмножеств множества X
R[a,b]
– множество вещественных чисел на [a,b]
BN — пространство двоичных векторов размерности N
— пустое слово из
множества входных слов КА
0 – ложь в выражении трехзначной логики
1 – истина в выражении трехзначной логики
— неопределенность в
выражении трехзначной логики
— есть
подвектор (совокупность выбранных компонент) вектора
— класс Y является потомком класса
X
1.
Введение.
1.1. Введение и задачи работы.
При
современном уровне развития техники, когда даже бытовая техника оснащается
микропроцессорными устройствами, возникла потребность в интеллектуальных
адаптивных системах управления, способных приспосабливаться к очень широкому
диапазону внешних условий. Более того, возникла потребность в универсальной
технологии создания таких систем. Научный опыт человечества свидетельствует о
том, что в природе можно найти великое множество ценных идей для науки и
техники. Человеческий мозг является самым удивительным и загадочным созданием
природы. Способность живых организмов, наделенных высшей нервной системой,
приспосабливаться к окружающей среде может служить призывом к подражанию
природе или имитации при создании технических систем.
Среди
имитационных подходов выделяется класс нейросетевых методов. Нейронные сети
(НС) нашли широкое применение в областях искуственного интеллекта, в основном
связанных с распознаванием образов и с теорией управления. Одним из основных
принципов нейросетевого подхода является принцип коннективизма. Суть его
выражается в том, что рассматриваются очень простые однотипные объекты,
соединенные в большую и сложную сеть. Таким образом, НС является в первую
очередь графом, с которым можно связать совокупность образов,
представленных как численные значения, ассоциированные с вершинами графа, алгоритм
для преобразования этих численных значений посредством передачи данных между
соседними вершинами и простых операций над ними. Современный уровень развития
микроэлектроники позволяет создавать нейрочипы, состоящие из очень большого
числа просты…